
Appendix 1: Implementation of the KBM
This appendix presents the implementation and the performance testing of the KBM.

Implementation
The  implementation  relies  on  the  same technologies  used by  the  FullFlow  server  for  easy
integration: Java Enterprise edition (JEE) 8, Glassfish 5, Java Server Faces (JSF) 2.2 and the Java
API for Extensible Markup Language (XML) Web Services (JAX-WS). However, we also wanted to
allow  execution  of  the  KBM  on  Android  OS,  and  integration  with  the  Diabetesdagboka[1]
application for future tests. We decided to use Plain Old Java Objects (POJOs) to represent most
of  the  reasoning  engine.  This  code  is  executable  on  both  systems  without  requiring  any
supplementary  work.  However,  the  FullFlow  server  injects  the  current  context  and
interpretation of the results to the KBM through contexts and dependency injection (CDI). For
Android, it is necessary to use the DiabetesDagboka proprietary API for gathering the current
context, and a string resource for collecting the interpretation. This section focuses on FullFlow
implementation only, as shown in Figure 1.

Figure 1: Simplified Unified Modeling Language (UML) diagram

The implementation is based on the reasoning engine model described in Figure 7 of the article
“Context-aware knowledge-based module for identifying relevant information and information
gaps in patients with type 1 diabetes’ self-collected health data” and follows the same processes
and sequences, even if minor changes are observed. The Constants class (top right) contains the
Plan Case Base of the system and the relation between the problem-identifying tasks, which is
part of the Explanation Case Base.  The Interpretation class (bottom left), which is  a session
bean,  contains  the  interpretation  of  identified  problems,  which  is  another  part  of  the
Explanation Case Base. Splitting the Explanation Case Base permits multi-language management
easily (in our case, English and Norwegian).

The DataManager class contains the current context collected by FullFlow. The HypothesesMng
(Manager)  represents  the  Hypotheses  Generation  process  and  keeps  references  to  all
hypotheses  and  their  results.  The  Hypothesis  class  contains  the  Hypothesis  Activation  and
Evaluation processes as well as the Hypothesis Result.

The KBM class represents the entire reasoning engine, initializing the Knowledge Base and the
Current Context, and keeps references to all processes and data related to them. In addition, it
contains  the  Interpretation  process.  We  decided  to  include  this  process  into  this  class  for



simpler code maintenance and calls between classes, even if the model of reasoning engine
separates them into two entities. The KBMBean exists as a bridge between the POJOs and the
JEE environment.

The POJOs class share their execution status through interfaces. For example, a hypothesis calls
a method, OnHypothesisResult(), which is implemented by the HypothesesMng to update the
plan case. The HypothesesMng also calls a method, OnEvaluationPerformed(), for informing the
KBM to initiate the interpretation process.

The reception of  a  request  from a  XML Web Services  Interface or  a  patient  visit  on  a  JSF
webpage initiates the flow of this  system. The KBMBean is created and is  injected with the
DataManager and Interpretation beans, and creates a single KBM object by giving it all of the
context available as parameters, which then perform the tasks described in the results section
of the article.

Figure 2 shows an excerpt of the KBM execution results.

Figure 2: Excerpt of the results of one instance of the KBM. ToE = Time of execution

Performance testing
Before measuring the performance of the module, unit tests supporting the white and black box
approaches (see Methods section  of the article for more details) were performed against the
KBM POJOs (Plain Old Java Objects, used in reasoning engine). The unit testing framework Junit



[2] was used for all tests. An example of a unit test for verifying that the KBM detects a variation
greater than 2 mmol/L blood glucose in an interval of less than 10 minutes is shown in Figure 3.

Figure 3: Example of a Unit Test

Then, to measure the potential impact on the performance of the FullFlow system, the time of
execution for each method of the POJOs (KBM, HypothesesMng and Hypothesis classes; see
Figure 1) were measured using nanoseconds. The Figure 2 shows the result of an excerpt run.
However,  the  nanoseconds  timing  can  be  affected  by  the  optimization  of  the  Java  Virtual
Machine (JVM), the GlassFish server as well as the system host. To address this issue, these tests
were performed on a fresh Debian 9 installation, with JVM 8 (Oracle) and Glassfish 5, with no
customization (e.g.  default  heap space,  default  domain)  and on a local  computer  (i7-7800X
@3.50  GHz).  The  second  problem  of  this  test  is  that  the  current  context  will  affect  the
performance. For example, more blood glucose registrations mean more time for calculating the
deviation, and no insulin registrations mean no evaluation process for  some hypotheses. To
address this issue, we simulated a typical load for the module: 3 weeks of self-collected health
data. According to the authors and participants of the workshops, 3 weeks could represent the
average time between consultations  when patients  are  actively  addressing  health  issues.  A
super-user of the Diabetesdagboka (Diabetes Diary) app provided the self-collected health data.
We define a super-user as a patient with diabetes who is extremely active in self-management
and who register data regularly.

Figure 2 shows an excerpt of the KBM results and its time of execution. In total, less than 26
milliseconds (ms) were necessary for the KBM to perform its task as shown in line 70. In fact,
the majority of the methods were executed in less than 1 ms. This is mainly due to the KBM
focusing  on  applying  rules  on  looked-up  context  already  provided  by  FullFlow,  with  some
exceptions. The next paragraph describes the most important parts of the excerpt.

Lines 2–5 show the creation of the KBM class, with the creation of the Explanation Case Base
and the first version of the current plan case, based on the Plan Base Case, with the loading of
the current context. This task took less than 1 ms (1084 nanoseconds).

Line 7 shows the case to be treated by the KBM. The patient is male, has type 1 diabetes and
registered  831  records  in  his  diary  application  over  3  weeks.  This  represents  almost  40



registrations  per  day.  For  comparison,  reliable patients  included  in  our  previous  studies
registered their health data between 10 and 20 times per day.

The  remaining  lines  show  the  time of  execution  of  each  hypothesis  according  to  the  plan
defined by the KBM class and executed by the HypothesesMng class. See Section Hypotheses
List for an explanation on the calculation done by the hypotheses.

Lines 10–41 concerns all hypotheses under the category ‘data is not reliable’, and are part of the
current plan defined by the KBM. The reliability grade obtained by this run is 42 out of 50, as
shown in line 10, and means that the data is reliable. Two methods took more than 1 ms to be
executed: HYP_ID_DR_EV_BG_VAR (line 15, 5 ms) and HYP_ID_DR_DIST_DAILY_15074-8 (line
27,  7 ms).  The first  corresponds to verification of blood glucose variation,  which should be
under 2 mmol/L in 10 minutes, and the second corresponds to the daily distribution of the
number  of  blood glucose registrations  that  should be under  20% deviation (15074-8 is  the
Logical Observation Identifiers Names and Codes [LOINC] code of glucose [moles/volume] in
blood).  This  section  of  this  excerpt  shows  that  the  patient  did  not  register  enough
carbohydrates regularly (line 24, <1 ms), and registered erroneous insulin values lower than 1
unit (line 18, <1 ms), resulting in a penalty of 8 points of the data reliability score.

Lines 42–68 show an example of health problem-identifying hypotheses. Lines 44–64 show a
hypoglycaemic event. According to line 45, this event occurred on the 16th December 2017 at
02:28. The from and to fields of line 45 are the same because a single blood glucose registration
was made during this hypoglycaemic event. This would not have been the case if the patient
was using a continuous glucose monitor (CGM), for example. The blood glucose values were
stored in the application in mg/dL and the system converted it to mmol/L, which explains the
value displayed in the same line. Line 47 shows that HypothesesMng updated the current plan
case when it  detected a  hypoglycaemic  event.  Therefore,  it  added hypotheses  to  the plan,
which correspond to lines 48–64.

These hypotheses show that this event could have been caused by excess insulin (line 48, <1
ms) based on the insulin factor calculation (line 50, <1 ms) and the I:C (line 51, <1 ms). It also
shows that the last carbohydrate intake was lower than the recommended value (line 54, <1
ms).  If  the  hypothesis  on  line  64  is  true,  that  means  there  is  a  potential  information  gap
regarding this event, as the module did not find any causes that could have led to this event.

Line 67 shows that the patient had correct blood pressure measurements (<1 ms) and line 68
shows that the patient did not sleep correctly according to recommendations on 18 out of 20
nights (4 ms).

This load test proved that the potential negative impacts on the FullFlow performance were
insignificant



1. Årsand  E.  Diabetesdagboka.  2018-03-07;  Available  from:
URL:http://www.diabetesdagboka.no/en/.  Accessed:  2018-03-07.  (Archived  by  WebCite®  at
http://www.webcitation.org/6xjkhnEJJ).
2. JUnit. 2018-03-07; Available from: URL:https://junit.org/junit5/. Accessed: 2018-03-07.
(Archived by WebCite® at http://www.webcitation.org/6xjmaWo5N).

http://www.webcitation.org/6xjmaWo5N
ttps://junit.org/junit5/.

	Appendix 1: Implementation of the KBM
	Implementation
	Performance testing


